scientific studies | GMO SCIENCE https://gmoscience.org A public platform where genetically engineered (GE) crop and food impacts are openly discussed and thoughtfully analyzed. Thu, 30 Nov 2023 00:04:51 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.1 https://gmoscience.org/wp-content/uploads/2023/11/cropped-fav-icon-32x32.png scientific studies | GMO SCIENCE https://gmoscience.org 32 32 Reading Scientific Studies: With a Perspective on a Mock GE Study https://gmoscience.org/2022/12/17/reading-scientific-studies-with-a-perspective-on-a-mock-ge-study/ https://gmoscience.org/2022/12/17/reading-scientific-studies-with-a-perspective-on-a-mock-ge-study/#comments Sat, 17 Dec 2022 00:22:10 +0000 https://gmoscience.org/?p=4052 by Dr. Michelle Perro, MD, DHOM

Dec. 2022

There has never been a more important time than the present to understand not only genetically engineered organisms, but the research behind their propagation and promotion. The science of genetically modified organisms (GMOs) or genetic engineering (GE) is rapidly evolving, and their introduction has altered and affects all aspects of our well-being, including:

  • Our health and the environment
  • Agriculture
  • Food manufacturing
  • Medical products

New applications of existing tools are constantly being developed, with access by professional and amateur scientists, both in the lab and in home garages. While still novel, claims of precision are unfounded and continue to prompt new questions about the environmental and health impacts.

To say that the understanding of GE technology is clear is arrogant. It is a complex challenge to understand the risks, performance, and costs of new developments, such as CRISPR. Market excitement, accompanied by profitable patents grab supersedes precaution and a thorough understanding of what is at stake is ignored or discarded. The argument of “safety” remains murky in the case of many GE crop technologies.

As physicians, scientists, and farmers, we read health-oriented scientific studies every day, looking to gain a deeper understanding of the root causes of dis-ease, while attempting to uncover better ways to restore and preserve health. The content of websites such as Regeneration Health International and GMOScience draw upon not only our boots-on-the-ground experiences, but our collective wisdom in interpreting science and how we help to understand and offer solutions on how to optimize health.

The Scientific Method and How Science Advances

The scientific method involves making a hypothesis and designing a study to test, support, or contradict the hypothesis. For example, if a substance is given to test animals in a long-term feeding trial, and we find that their organs such as the liver and kidneys have normal weight and appearance by the end of the study period, all we can say is that under the conditions of this experiment, there was no evidence of an adverse or toxic impact on these vital organs.

However, a study that delves more carefully into liver and kidney function, and not just the appearance, may reach a conflicting conclusion. Therefore, the first step in any quality study is to carefully review research protocols, records, and analytical and statistical methods in order to identify why the study results differ. It usually takes additional studies to further comprehend what happened and why. In some cases, questions linger even after dozens of studies, investments, and time spent in specialized studies. More questions may be raised than answered.

In the case of the rat feeding trial prior to the launch of GMOs, Monsanto studied rats for a 3 month period, fed a GMO diet. A confounding factor not identified was the quality and sourcing of their diet. Abnormalities were found, for example, in blood chemistries. Rather than performing the recommendations noted above, the conclusion in their study was that the findings were “not of clinical significance”. Both scientists and non-scientists would agree that this is faulty logic. Despite this concerning finding, GMOs were released.

The consequence of any study that demonstrates unintended consequences should have been further studies to analyze the problems found and/or to have withdrawn the product completely.

Are Regulators Regulating?

The challenge for policy makers is to specify the rules that govern what happens in the face of uncertain science and potential risks of severity, reach, and longevity.

With advances in analytical technologies and risk assessment tools, we can look at entirely different aspects and interactions between genetics and lifestyles, and between biology and health. These advances should be welcomed and are needed, and will allow public health scientists and regulators to do their jobs and avoid any uninvited surprised following the present rapid approval and release of GE crop and animal technology.

The Nuts and Bolts of Sound Risk Assessment

The top-shelf type of an experiment is a double-blind, placebo-controlled study in a well-characterized human population. For example, if RHI or GMOScience wanted to assess the safety of a GE corn trait to be introduced into the market, the collective team would need to do the following:

Nutrients and Minerals

In addition to harmful toxins, MAA also tested for various beneficial nutrients and minerals. They found the school lunches to be deficient in almost every category, most significantly copper, calcium, potassium, and phosphorus. Around 50% of samples lacked sufficient magnesium, zinc, and manganese. All of these minerals are vital to proper body function.

Nutrition is essential to our children’s physical, mental, and developmental health. The MAA study has revealed not only low nutrition in school lunches, but a host of actively harmful toxicants with myriad negative health consequences. This particularly impacts low-income children, for many of whom school lunch may be the only meal they eat that day.

  • Assess a large number of people which gives the study “power”
  • The people would be separated randomly into two groups
  • A specific strain of GE corn grown under typical conditions would be studied
  • One group of individuals in the study would consume a defined amount of the GE corn over a specified time period
  • The other group would consume the same amount of corn, but from ears harvested from a field planted with the GE corn’s isoline, meaning the same background genetics, but without GE traits
  • The control group would be comprised of corn uncontaminated with pesticides
  • The two groups would be blinded as to which group they were enrolled and what they were consuming
  • The teams conducting the trials would also be blinded as to which individuals were in the two assigned groups
  • The team would designate which types of impacts from the ingestion of the corn that warrant tracking and perform comparisons between the groups
  • Sample parameters might include changes in weight, metabolism, blood pressure, issues in the gastrointestinal tract, etc.
  • Different tests could be utilized to look at organ function, changes in physiology and biopsies, or special tests (i.e., to assess the microbiome)
  • When including laboratory tests, before and after studies are desirable for comparison

One of the most important aspects of a study is to avoid bias. Researchers on the teams examining any data or lab samples need to be unaware of which group the samples came from, and this is the second blinded aspect of a double-blind, placebo-controlled study.

The team would then analyze the data and perform the following:

  • Compare impacts in the two study groups
  • Assess treatment-oriented differences
  • Record all findings which may or may not go against what they originally thought the results might reveal.

Human feeding studies are difficult, but are the gold standard. Straying from diet protocols dilutes what is called the statistical power of the study (i.e., the ability to detect differences in outcomes, if they indeed exist). For the best quality outcome, if one is doing a GE corn consumption study, the following would be need to be done:

  • The setting is controlled, meaning in this case, the food is provided
  • Intake is controlled and carefully measured  
  • Blinded researchers would be responsible for data collection during the study
  • Study supervisors would require technical training

It is obvious the inherent difficulties and expenses one would encounter in trying to create this type of study needed to assess GE products. While the above type of study is desired as outlined-above, such studies have not been conducted on GE crop traits because who will be willing to pay for them? Without this evidence, assertions that foods derived from GE crops are safe are premature and inherently faulty. We have relied on rodent studies with many study shenanigans at play that manipulate data, such as using only a certain healthy population (i.e., juveniles), shortening the course of a feeding study, using contaminated feed in both groups which would diminish the impact of the findings and dismissing abnormal results, and the conflagration of absolute and relative risks. Sound familiar?

What Does Top-Tier Journalism Look Like?

Debate and re-examination of assumptions and accepted conclusions should be ongoing and active. Critical analysis of research methods is essential. However, even study types that appear powerful or invincible can have drawbacks, such as studies called meta-analyses which employ a statistical technique for aggregating data from multiple studies on a topic of interest. These types of studies are very important in healthcare settings because of their ability to weigh in on various degrees of evidence supporting different health strategies.

Conflicts of Interest

The more comprehensive the research the more expenses incurred. Bias can find its way into studies through many avenues, both inadvertently and intentionally. That is why all reputable, high-impact journals utilize rigorous peer review and have conflict-of-interest as well as funding disclosure requirements. These mechanisms can serve to promote transparency and alert both study reviewers and readers to be on the lookout for the “devil in the details”.

While journals make efforts to combat bias and to disclose conflicts of interests, this does not make up for the lack of sufficient quality studies presently on GE crops. Often, the companies promoting the engineered foods are in charge of their own studies, injecting immediate bias. Neither the EPA nor FDA independently carry out risk assessment studies.

Teams of independent technology developers are necessary and industry-sponsored studies should be eliminated. The quality of studies conducted by GE technology developers has been uneven, with evidence of inappropriate methods, problematic data collection and fraud. A study is 2 to 5 times more likely to be favorable to a funder with a vested interest in a particular outcome, compared to a similar study on the same subject funded by a neutral source. Over time, the steady pressure of conflicts of interest has done much to skew the focus and quality of science supporting regulatory and public health decision-making, but this is far from what is should be for novel food products. Once they are released into the environment, recall is impossible.

RHI recognized that the restoration of integrity in the assessment and regulation of agricultural biotechnology is a complex and difficult mission, but vital if we are to prevent unintended consequences. Understanding study basics is a key part of this recognition. Our intention is to promote solutions-based platforms to regenerate health.

First, Do No Harm – Primum Non Nocere

An endeared principle to physicians is, “First, do no harm”. Thus, when doctors read scientific studies, they look hard for evidence of potential harm.

If a study does point to possible harm, obvious next questions include:

  • Was there a follow up study that looked at the issues
  • Did that study resolve or reinforce concerns over risk
  • Is there any biological plausibility to a link between certain health problems and the consumption of GE foods and/or their pesticide components
  • Can doctors extract from the published literature insights regarding who might be at risk (population cohorts) or who might be most responsive to an intervention

In order to be recommended by a physician, a substance must demonstrate evidence of benefit that clearly outweighs its potential for harm.

While we are presently referring to an invented GE study, one can extrapolate how this type of analysis is relevant to any population threat.

When less harmful alternatives with similar benefits exist, the choice is simple. This should be the basis of all FDA new drug approvals, but is rarely discussed in the context of GE crops and its oversight agency, the EPA. Whether the regulatory agencies are adhering to their own protocols is questionable.

Pressing Recognition of the Need for Excellent, Non-compromised Science

Different global agencies and medical institutions have stated that there are inadequate studies that show that GE foods are unequivocally safe. The scope and kind of studies necessary to support definitive safety findings are not required by the FDA or the EPA and have not been conducted on a single GE trait or crop. The GE plant-based Impossible Burger, now being consumed across the world especially in vegetarian communities, is based on one faulty study showing harm to the scanty number of rats studied, dismissed as inconsequential. We deserve and must demand better. Understanding the science is a key component in determining food policy. The goal of the RHI team is to provide readers, eaters and policy makers regarding what good science tastes like.

Note: This is a previously published article study by GMOScience.

]]>
https://gmoscience.org/2022/12/17/reading-scientific-studies-with-a-perspective-on-a-mock-ge-study/feed/ 5
How Do We Read Scientific Studies? With a Perspective on a Simulated Study on Genetic Engineering https://gmoscience.org/2022/12/08/how-do-we-read-scientific-studies-with-a-perspective-on-a-simulated-study-on-genetic-engineering/ Thu, 08 Dec 2022 21:37:10 +0000 https://www.rhi.bio/?p=677668

There has never been a more important time than the present to understand not only genetically engineered organisms, but the research behind their propagation and promotion. The science of genetically modified organisms (GMOs) or genetic engineering (GE) is rapidly evolving, and their introduction has altered and affects all aspects of our well-being, including:

  • Our health and the environment
  • Agriculture
  • Food manufacturing
  • Medical products

New applications of existing tools are constantly being developed, with access by professional and amateur scientists, both in the lab and in home garages. While still novel, claims of precision are unfounded and continue to prompt new questions about the environmental and health impacts.

To say that the understanding of GE technology is clear is arrogant. It is a complex challenge to understand the risks, performance, and costs of new developments, such as CRISPR. Market excitement, accompanied by profitable patents grab supersedes precaution and a thorough understanding of what is at stake is ignored or discarded. The argument of “safety” remains murky in the case of many GE crop technologies.

As physicians, scientists and farmers, we read health-oriented scientific studies every day, looking to gain a deeper understanding of the root causes of dis-ease, while attempting to uncover better ways to restore and preserve health. The content of our website, Regeneration Health International (www.rhi.bio), draws upon not only our boots-on-the-ground experiences, but our collective wisdom in interpreting science and how we help to understand and offer solutions on how to optimize health.

The Scientific Method and How Science Advances

The scientific method involves making a hypothesis and designing a study to test, support or contradict the hypothesis. For example, if a substance is given to test animals in a long-term feeding trial, and we find that their organs such as the liver and kidneys have normal weight and appearance by the end of the study period, all we can say is that under the conditions of this experiment, there was no evidence of an adverse or toxic impact on these vital organs.

However, a study that delves more carefully into liver and kidney function, and not just the appearance, may reach a conflicting conclusion. Therefore, the first step in any quality study is to carefully review research protocols, records, and analytical and statistical methods in order to identify why the study results differ. It usually takes additional studies to further comprehend what happened and why. In some cases, questions linger even after dozens of studies, investments, and time spent in specialized studies. More questions may be raised than answered.

In the case of the rat feeding trial prior to the launch of GMOs, Monsanto studied rats for a 3 month period, fed a GMO diet. A confounding factor not identified was the quality and sourcing of their diet. Abnormalities were found, for example, in blood chemistries. Rather than performing the recommendations noted above, the conclusion in their study was that the findings were “not of clinical significance”. Both scientists and non-scientists would agree that this is faulty logic. Despite this concerning finding, GMOs were released.

The consequence of any study that demonstrates unintended consequences should have been further studies to analyze the problems found and/or to have withdrawn the product completely.

Are Regulators Regulating?

The challenge for policy makers is to specify the rules that govern what happens in the face of uncertain science and potential risks of severity, reach, and longevity.

With advances in analytical technologies and risk assessment tools, we can look at entirely different aspects and interactions between genetics and lifestyles, and between biology and health. These advances should be welcomed and are needed, and will allow public health scientists and regulators to do their jobs and avoid any uninvited surprised following the present rapid approval and release of GE crop and animal technology.

The Nuts and Bolts of Sound Risk Assessment

The top-shelf type of an experiment is a double-blind, placebo-controlled study in a well-characterized human population. For example, if RHI wanted to assess the safety of a GE corn trait to be introduced into the market, the collective team would need to do the following:

  • Assess a large number of people which gives the study “power”
  • The people would be separated randomly into two groups
  • A specific strain of GE corn grown under typical conditions would be studied
  • One group of individuals in the study would consume a defined amount of the GE corn over a specified time period
  • The other group would consume the same amount of corn, but from ears harvested from a field planted with the GE corn’s isoline, meaning the same background genetics, but without GE traits
  • The control group would be comprised of corn uncontaminated with pesticides
  • The two groups would be blinded as to which group they were enrolled and what they were consuming
  • The teams conducting the trials would also be blinded as to which individuals were in the two assigned groups
  • The team would designate which types of impacts from the ingestion of the corn that warrant tracking and perform comparisons between the groups
  • Sample parameters might include changes in weight, metabolism, blood pressure, issues in the gastrointestinal tract, etc.
  • Different tests could be utilized to look at organ function, changes in physiology and biopsies, or special tests (I.e., to assess the microbiome)
  • When including laboratory tests, before and after studies are desirable for comparison

One of the most important aspects of a study is to avoid bias. Researchers on the teams examining any data or lab samples need to be unaware of which group the samples came from, and this is the second blinded aspect of a double-blind, placebo-controlled study.

The team would then analyze the data and perform the following:

  • Compare impacts in the two study groups
  • Assess treatment-oriented differences
  • Record all findings which may or may not go against what they originally thought the results might reveal.

Human feeding studies are difficult, but are the gold standard. Straying from diet protocols dilutes what is called the statistical power of the study (I.e., the ability to detect differences in outcomes, if they indeed exist). For the best quality outcome, if one is doing a GE corn consumption study, the following would be need to be done:

  • The setting is controlled, meaning in this case, the food is provided
  • Intake is controlled and carefully measured
  • Blinded researchers would be responsible for data collection during the study
  • Study supervisors would require technical training

It is obvious the inherent difficulties and expenses one would encounter in trying to create they type of study needed to assess GE products. While the above type of study is desired as outlined-above, such studies have not been conducted on GE crop traits because who will be willing to pay for them? Without this evidence, assertions that foods derived from GE crops are safe are premature and inherently faulty. We have relied on rodent studies with many study shenanigans at play that manipulate data, such as using only a certain healthy population (i.e., juveniles), shortening the course of a feeding study, using contaminated feed in both groups which would diminish the impact of the findings and dismissing abnormal results, and the conflagration of absolute and relative risks. Sound familiar?

What Does Top-Tier Journalism Look Like?

Debate and re-examination of assumptions and accepted conclusions should be ongoing and active. Critical analysis of research methods is essential. However, even study types that appear powerful or invincible can have drawbacks, such as studies called meta-analyses which employ a statistical technique for aggregating data from multiple studies on a topic of interest. These types of studies are very important in healthcare settings because of their ability to weigh in on various degrees of evidence supporting different health strategies.

Conflicts of Interest

The more comprehensive the research the more expenses incurred. Bias can find its way into studies through many avenues, both inadvertent and intentional. That is why all reputable, high-impact journals utilize rigorous peer review and have conflict-of-interest as well as funding disclosure requirements. These mechanisms can serve to promote transparency and alert both study reviewers and readers to be on the lookout for the “devil in the details”.

While journals make efforts to combat bias and to disclose conflicts of interests, this does not make up for the lack of sufficient quality studies presently on GE crops. Often, the companies promoting the engineered foods are in charge of their own studies, injecting immediate bias. Neither the EPA nor FDA independently carry out risk assessment studies.

Teams of independent technology developers are necessary and industry-sponsored studies should be eliminated. The quality of studies conducted by GE technology developers has been uneven, with evidence of inappropriate methods, problematic data collection and fraud. A study is 2 to 5 times more likely to be favorable to a funder with a vested interest in a particular outcome, compared to a similar study on the same subject funded by a neutral source. Over time, the steady pressure of conflicts of interest has done much to skew the focus and quality of science supporting regulatory and public health decision-making, but this is far from what is should be for novel food products. Once they are released into the environment, recall is impossible.

RHI recognized that the restoration of integrity in the assessment and regulation of agricultural biotechnology is a complex and difficult mission, but vital if we are to prevent unintended consequences. Understanding study basics is a key part of this recognition. Our intention is to promote solutions-based platforms to regenerate health.

First, Do No Harm – Primum Non Nocere

An endeared principle to physicians is, “First, do no harm”. Thus, when doctors read scientific studies, they look hard for evidence of potential harm.

If a study does point to possible harm, obvious next questions include:

  • Was there a follow up study that looked at the issues
  • Did that study resolve or reinforce concerns over risk
  • Is there any biological plausibility to a link between certain health problems and the consumption of GE foods and/or their pesticide components
  • Can doctors extract from the published literature insights regarding who might be at risk (population cohorts) or who might be most responsive to an intervention

In order to be recommended by a physician, a substance must demonstrate evidence of benefit that clearly outweighs its potential for harm.

While we are presently referring to an invented GE study, one can extrapolate how this type of analysis is relevant to any population threat.

When less harmful alternatives with similar benefits exist, the choice is simple. This should be the basis of all FDA new drug approvals, but is rarely discussed in the context of GE crops and its oversight agency, the EPA. Whether the regulatory agencies are adhering to their own protocols is questionable.

Pressing Recognition of the Need for Excellent, Non-compromised Science

Different global agencies and medical institutions have stated that there are inadequate studies that show that GE foods are unequivocally safe. The scope and kind of studies necessary to support definitive safety findings are not required by the FDA or the EPA and have not been conducted on a single GE trait or crop. The GE plant-based Impossible Burger, now being consumed across the world especially in vegetarian communities, is based on one faulty study showing harm to the scanty number of rats studied, dismissed as inconsequential. We deserve and must demand better. Understanding the science is a key component in determining food policy. The goal of the RHI team is to provide readers, eaters and policy makers regarding what good science tastes like.

This study was originally published by GMOScience, a website with the guiding principle of ensuring that GE crops “does no harm” to people and the health of the environment.

]]>
Floating Wetlands: A Possible Solution to Urban Pollution https://gmoscience.org/2022/11/28/floating-wetlands-a-possible-solution-to-urban-pollution/ Mon, 28 Nov 2022 23:40:56 +0000 https://www.rhi.bio/?p=677656 Floating wetlands are man-made artificial platforms that support the growth of aquatic plants in water that is typically too deep for them. There is an expanding technology that is gaining popularity in urban areas that involves installing multiple floating wetlands in rivers that pass through the cities. The plants that take up residence in these artificial islands can take up excess agricultural nutrients and lock up chemicals and toxic metals. This can help prevent the development of algal blooms and dead zones. Some of the plants that gain a foothold on these artificial islands include short, native grasses and plants, such as sedges, swamp milkweed, and queen of the prairie.

These islands are often constructed from polyethylene and metal frames, bolted together and draped in matting. They are then anchored to the river bottom so that they will stay in place as the roots grow into the water. These so-called “riverponic systems” require no soil or other substrate for support. They provide an inviting habitat for aquatic life to help bring back the ecosystem services that were originally lost because of industrial development.

To learn more about this interesting solution to waterway pollution, click here.

]]>
There Is No Need For GMO Maize: Regenerative Organic Agriculture Produces Higher Yields https://gmoscience.org/2022/11/18/there-is-no-need-for-gmo-maize-regenerative-organic-agriculture-produces-higher-yields/ Fri, 18 Nov 2022 16:31:28 +0000 https://www.rhi.bio/?p=677639

Introduction

Andrés Manuel López Obrador, the President of Mexico, announced the phasing out of glyphosate and the cultivation and importation of GMO corn. He stated, “With the objective of achieving self-sufficiency and food sovereignty, our country must be oriented towards establishing sustainable and culturally adequate agricultural production, through the use of agroecological practices and inputs that are safe for human health, the country’s biocultural diversity and the environment, as well as congruent with the agricultural traditions of Mexico.”

The pesticide cartels of Bayer-Monsanto and Dow have been actively undermining this policy. This includes using the US government to pressure Mexico to reverse the policy and launching over 40 lawsuits to stop it.

This includes a fear campaign that phasing out glyphosate and GMOs will lead to food shortages and insecurity.

GMO corn not only uses high amounts of glyphosate, but it also uses a range of other toxic pesticides and fertilizers that cause serious health problems for humans, especially children, and the wider environment. The fact is there is no need for these toxic and environmentally damaging industrial agriculture monocultures. Regenerative and organic systems based on the science and practices of agroecology will produce higher yields and income for Mexican farmers and wider health benefits for the Mexican community.

Higher Net Incomes

A viable income is an essential part of farm sustainability. Published studies comparing the income of organic farms with conventional farms have found that the net incomes are similar, with best-practice organic systems having higher net incomes (Cacek 1986, Wynen 2006).

The study by Noémi Nemes from the United Nations Food and Agriculture Organization (FAO) analyzed over 50 economic studies. She stated that the data, “… demonstrates that, in the majority of cases, organic systems are more profitable than non-organic systems. Higher market prices and premiums, or lower production costs, or a combination of the two generally result in higher relative profits from organic agriculture in developed countries. The same conclusion can be drawn from studies in developing countries, but there, higher yields combined with high premiums are the underlying causes of their relatively greater profitability.’” (Nemes 2013)

The report by UNEP and UNCTAD found that not only did organic production increase the amount of food production it also gave farmers access to premium value markets and to use the additional income to pay for education, health care, adequate housing and achieve relative prosperity (UNEP-UNCTAD 2008). The LTAR project of Iowa State University found that cost-wise, on average, the organic crops’ revenue was twice that of conventional crops due to the savings from the non-utilization of chemical fertilizers and pesticides (Delate, 2010).

Greater Resilience in Adverse Conditions

Published studies show that regenerative organic farming systems are more resilient to the predicted weather extremes and can produce higher yields than conventional farming systems in such conditions (Drinkwater et al., 1998; Welsh, 1999; Pimentel, 2005). For instance, the Wisconsin Integrated Cropping Systems Trials found that organic yields were higher in drought years and the same as conventional in normal weather years (Posner et al., 2008).

Improved Efficiency of Water Use

Research shows that organic systems use water more efficiently due to better soil structure and higher levels of humus and other organic matter compounds (Lotter et al., 2003; Pimentel, 2005). Lotter and colleagues collected data over 10 years during the Rodale Farm Systems Trial (FST). Their research showed that the organic manure system and organic legume system (LEG) treatments improve the soils’ water-holding capacity, infiltration rate, and water capture efficiency. The LEG maize soils averaged 13% higher water content than conventional system (CNV) soils at the same crop stage, and 7% higher than CNV soils in soybean plots (Lotter et al., 2003). The more porous structure of organically treated soil allows rainwater to quickly penetrate the soil, resulting in less water loss from run-off and higher levels of water capture. This was particularly evident during the two days of torrential downpours from Hurricane Floyd in September 1999, when the organic systems captured around double the water than the conventional systems captured (Lotter et al., 2003).

Long-term scientific trials conducted by the Research Institute of Organic Agriculture (FiBL) in Switzerland, a European mountain country, comparing organic, biodynamic, and conventional systems (DOK Trials) had similar results showing that organic systems were more resistant to erosion and better at capturing water. (Mader et al 2009)

The higher levels of organic matter allow the soil in the organic field to resist erosion in heavy rain events and capture more water. (Source: FiBL DOK Trials)

This is consistent with many other comparison studies that show that organic systems have less soil loss due to better soil structure and higher levels of organic matter. (Reganold et al. 1987, Reganold et al. 2001, Pimentel 2005) “We compare the long-term effects (since 1948) of organic and conventional farming on selected properties of the same soil. The organically farmed soil had significantly higher organic matter content, thicker topsoil depth, higher polysaccharide content, lower modulus of rupture, and less soil erosion than the conventionally farmed soil. This study indicates that, in the long term, the organic farming system was more effective than the conventional farming system in reducing soil erosion and, therefore, in maintaining soil productivity (Reganold et al. 1987).


The same soil with different levels of organic matter. The higher levels on the left make the soil more resistant to erosion and give a higher water-holding capacity. The soil on the right with low levels of organic matter is more prone to erosion, and dispersion and holds less water. Source: Rodale Institute

Humus, a key component of soil organic matter, is one of the main reasons for the ability of organic soils to be more stable and to hold more water. This is due to its ability to hold up to 30 times its own weight in water and is a ‘sticky’ polymer, gluing the soil particles together and giving greater resistance to water and wind erosion (Stevenson 1998).

Humus can hold up to 30 times its own weight in water. It is a polymer that binds the soil together to give it stability and holds many of the nutrients that plants need to grow well

Drought Resistance

Published studies show that organic farming systems are more resilient to weather extremes and can produce higher yields than conventional farming systems in such conditions (Drinkwater et al., 1998; Pimentel, 2005). For instance, the Wisconsin Integrated Cropping Systems Trials found that organic yields were higher in drought years and the same as conventional in normal weather years (Posner et al., 2008).

The Importance of Organic Matter for Water Retention

There is a strong relationship between the levels of soil organic matter and the amount of water that can be stored in the root zone of the soil. The table below should be taken as a rule of thumb, rather than as a precise set of measurements. Different soil types will hold different volumes of water when they have the same levels of organic matter due to pore spaces, specific soil density, and a range of other variables. Sandy soils as a rule hold less water than clay soils.

The table below gives an understanding of the potential amount of water that can be captured from rain and stored at the root zone in relation to the percentage of soil organic matter.

This table is designed to be a rule of thumb. The precise amount of water stored is dependent on soil type, specific soil density, and a range of other variables, and consequently, the amount could be higher or lower. This table is sufficient to allow an understanding of the concept, though. (Adapted from Morris, 2004.)

There is a large difference in the amount of rainfall that can be captured and stored between the current SOM level in most traditional farms in Asia, Latin America, and Africa and a good organic farm with reasonable levels of SOM. This is one of the reasons why organic farms do better in times of low rainfall and drought.

The Rodale Farming Systems Trials (FST) showed that the organic systems produced more corn than the conventional system in drought years. The average corn yields during the drought years were from 28% to 34% higher in the two organic systems. The yields were 6,938 and 7,235 kg per ha in the organic animal and the organic legume systems, respectively, compared with 5,333 kg per ha in the conventional system (Pimentel, 2005). The researchers attributed the higher yields in the dry years to the ability of the soils on organic farms to better absorb rainfall. This is due to the higher levels of organic carbon in those soils, which makes them more friable and better able to store and capture rainwater which can then be used for crops. (Rodale 2011)

This is very significant information as the majority of the world’s farming systems are rain-fed. The world does not have the resources to irrigate all of the agricultural lands. Nor should such a project be started as damming the world’s watercourses, pumping from all the underground aquifers, and building millions of kilometers of channels would be an unprecedented environmental disaster. Improving the efficiency of rain-fed agricultural systems through organic practices is the most efficient, cost-effective, environmentally sustainable, and practical solution to ensure reliable food production in the increasing weather extremes being caused by climate change.

Pesticides and Human Health

The chemical-based conventional agriculture industry claims that pesticides such as herbicides, and insecticides are safe when used as directed. Given that all surveys show pesticide residues in conventional food, such as 77 percent of all foods in the United States, and that most people get their pesticide exposure from food, it is important to have a critical look at the published science. (Reuben 2010)

The body of published science shows that agricultural chemicals are responsible for declines in biodiversity and environmental and health problems continue to grow. These toxic chemicals now pervade the whole planet, polluting our water, soil, air, and most significantly the tissues of most living organisms.

The issue that inadequate pesticide regulation is resulting in major environmental and human health problems has been validated by several recent studies. The most significant has been the latest Report by the US President’s Cancer Panel. This report was written by eminent scientists and medical specialists and published by The U.S. Department of Health and Human Services, The National Institutes of Health and The National Cancer Institute clearly stated that environmental toxins, including chemicals used in farming, are the main causes of cancers. (Reuben 2010)

Pesticides and Children’s Health – The need to protect our children

Of particular concern is that science shows that unborn and growing children are the most vulnerable to the current levels of pesticides in our food and environment. A large body of published, peer-reviewed scientific research shows that pesticide exposure in is linked to:

•Cancers
•Thyroid disorders
•Immune system problems
•Lower IQs
•Attention deficit hyperactive disorder
•Autism spectrum disorders
•Lack of physical coordination
•Loss of temper—anger management issues
•Bipolar/schizophrenia spectrum of illnesses
•Depression
•Digestive system problems
•Cardiovascular disease
•Reproductive problems (as adults)
•Deformities of the genital-urinary systems
•Changes to metabolic systems, including childhood obesity and diabetes (Leu 2014)

The Special Needs of the Developing Fetus and Newborn

Many scientific researchers have expressed concern that the current pesticide testing methodologies are grossly inadequate for children. The US President’s Cancer Panel (USPCP) report, written by eminent scientists and medical specialists from the US Department of Health and Human Services, the National Institutes of Health, and the National Cancer Institute, stated, “They [children] are at special risk due to their smaller body mass and rapid physical development, both of which magnify their vulnerability to known or suspected carcinogens, including radiation.” (Reuben 2010)

According to the USPCP, “Further, chemicals typically are administered when laboratory animals are in their adolescence, a methodology that fails to assess the impact of in utero, childhood, and lifelong exposures.” (Reuben 2010)

This is a very important issue given that, according to the USPCP around eighty percent of cancers are from environmental causes including pesticides. The report stated, “Approximately 40 chemicals classified by the International Agency for Research on Cancer (IARC) as known, probable, or possible human carcinogens, are used in EPA-registered pesticides now on the market.” (Reuben 2010)

This is a critical issue as there is a large body of published science showing that the fetus and the newborn are continuously being exposed to numerous chemicals. The USPCP stated, “Some of these chemicals are found in maternal blood, placental tissue, and breast milk samples from pregnant women and mothers who recently gave birth. These findings indicate that chemical contaminants are being passed on to the next generation, both prenatally and during breastfeeding.” (Reuben 2010)

The US President’s Cancer Panel not only expressed concern about the level of these chemical contaminants, but they also pointed out that this issue is being ignored by regulators due to the critical lack of knowledge and researchers. “Numerous environmental contaminants can cross the placental barrier; to a disturbing extent, babies are born ‘pre-polluted.” Children also can be harmed by genetic or other damage resulting from environmental exposures sustained by the mother (and in some cases, the father). There is a critical lack of knowledge and appreciation of environmental threats to children’s health and a severe shortage of researchers and clinicians trained in children’s environmental health.” (Reuben 2010)

A number of studies show the link between chemical exposure, particularly exposure to pesticides, and the increase of cancer in children. The USPCP report states, “Cancer incidence in US children under 20 years of age has increased.” (Reuben 2010)

The information from USCP shows that current regulatory systems have failed to protect unborn and growing children from exposure to a massive cocktail of toxic pesticides. This has many serious implications, especially the increase in a range of serious health issues in children and adults later in life.

Developmental Neurotoxicity

Scientific research shows that many pesticides affect the normal development of the nervous system in fetuses and children. The brain is the largest collection of nerve cells, and there are several scientific studies showing that when the fetus and the newborn are exposed to minute amounts of these pesticides, below the current limits set by regulatory authorities, they can significantly alter brain function (Qiao et al. 2001).

Researchers at the Duke University Medical Centre found that the developing fetus and the newborn are particularly vulnerable to amounts of pesticides that are lower than the levels currently permitted by regulatory authorities around the world. Their studies showed that the fetus and the newborn possess lower concentrations of protective serum proteins than adults. A major consequence is called Developmental Neurotoxicity, where the poison damages the developing nervous system. This damage interferes with the normal development of the brain and other parts of the nervous systems such as auditory nerves, optic nerves, and the autonomous nervous system resulting in the health challenges mentioned previously, such as:

•Lower IQs
•Attention deficit hyperactive disorder (ADHD)
•Autism spectrum disorders
•Lack of physical coordination
•Loss of temper—anger management issues
•Bipolar/schizophrenia spectrum of illnesses
•Depression
•Problems with eyesight and hearingv (Qiao et al. 2001).

This means that contact with chemicals at levels well below the currently permitted residues in food can harm the fetus and breastfeeding children, even if the mother shows no side effects from the contact. Eating food with pesticide residues can harm young children as they are still developing their nervous systems.

Brain Abnormalities and IQ Reductions in Children

Studies conducted independently by researchers at the Columbia University Centre for Children’s Environmental Health, the University of California, Berkeley, and the Mount Sinai School of Medicine found that fetal exposure to small amounts of organophosphate pesticides caused a range of brain abnormalities that resulted in children with reduced IQs, lessened attention spans and are more vulnerable to attention deficit hyperactivity disorder (ADHD) (Pastor et al. 2008, Rauh et al. 2011, Engel et al. 2011).

Parents should have considerable concern that the studies found no evidence of a lower-limit threshold of exposure to organophosphates in the observed adverse impact on intelligence. This means that even very low levels of exposure could lead to reductions in a child’s intelligence.

The study by Rauh et al., published in the journal Proceedings of the National Academy of Sciences of the United States of America, has confirmed the findings of the previous studies. The researchers used MRI scans that revealed a large range of visible brain abnormalities present in children who had been exposed to chlorpyrifos (CPF) in utero through normal, non-occupational uses. (Rauh et al. 2012)

Exposure to CPF in the womb, even at normal levels, resulted in “…significant abnormalities in morphological measures of the cerebral surface associated with higher prenatal CPF exposure” in a sample of forty children between five and eleven years old. (Rauh et al. 2012) The researchers stated that the current regulatory safety limits and testing methodologies are inadequate for determining safe exposure levels for children.”

It is important to note that most children are exposed to pesticides in utero by the residues in their mothers’ diets.

Some of the most concerning studies show that pesticide damage can be passed on to the next generation. Not only are the offspring born with damage to the nervous system, the reproductive system, and other organs, the great-grandchildren can be as well. (Manikkam et al. 2012 a, Manikkam et al. 2012 b, Guerrero-Bosagna et al. 2012)

Researchers in a 2012 study found that pregnant rats and mice exposed to the fungicide vinclozolin during the period when the fetus was developing reproductive organs, found spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities, and polycystic ovarian disease were significantly increased in future generations. (Manikkam et al. 2012 a)

Another study showed that when pregnant rats were exposed to a combination of permethrin, a common insecticide, and DEET (N,N-diethyl-meta-toluamide), the most common insect repellent, pubertal abnormalities, testis disease, and ovarian disease (primordial follicle loss and polycystic ovarian disease) were increased in future generations. (Manikkam et al. 2012 b)

The critical issue with these two studies is that small exposures to pesticides at critical times in the development of the fetus can cause multiple diseases that are passed on to future generations. It means that pregnant women eating food with minute levels of pesticides could be inadvertently exposing their children, grandchildren, and great-grandchildren to permanent damage to their reproductive systems and other organs.

This study is particularly distressing because DEET is the most common repellent used for mosquitoes and other insects. It is widely used on children and pregnant women.

Endocrine Disruption

Children are more vulnerable than adults to the effects of endocrine disrupters because their tissues and organs are still developing and are reliant on balanced hormone signals to ensure that they develop in orderly sequences. Small disruptions in these hormone signals by endocrine-disrupting chemicals can significantly alter the way these body parts and metabolic systems will develop. These altered effects will not only last a lifetime; they can be passed on to future generations. (Bergman et al. 2013, Vandenberg et al. 2012, Colborn et al. 1996, Cadbury 1998)

A meta-study by United Nations World Health Organization (WHO) and the United Nations Environmental Program (UNEP) written by over sixty recognized international experts who worked throughout 2012 to contribute to the meta-analysis to ensure that it was an up-to-date compilation of the current scientific knowledge on endocrine disrupting chemicals (EDCs), including pesticides, found, “…we now know that there are particularly vulnerable periods during fetal and postnatal life when EDCs alone, or in mixtures, have strong and often irreversible effects on developing organs, whereas exposure of adults causes lesser or no effects. Consequently, there is now a growing probability that maternal, fetal, and childhood exposure to chemical pollutants play a larger role in the etiology of many endocrine diseases and disorders of the thyroid, immune, digestive, cardiovascular, reproductive, and metabolic systems (including childhood obesity and diabetes) than previously thought possible.” (Bergman et al. 2013)

The fetus is most vulnerable during the times when genes are turned on to develop specific organs. Small amounts of hormones give the signals to genes to start developing various body parts and systems such as the reproductive tract, the nervous system, the brain, the immune system, hormone systems, limbs, etc. Small disruptions in these hormone signals can significantly alter the way these body parts and systems will develop, and these altered effects will last a lifetime.

“This does not diminish their [EDCs] importance [in adults], but contrasts with their effects in the fetus and neonate where a hormone can have permanent effects in triggering early developmental events such as cell proliferation or differentiation. Hormones acting during embryonic development can, cause some structures to develop (e.g. male reproductive tract) or cause others to diminish (e.g. some sex-related brain regions). Once hormone action has taken place, at these critical times during development, the changes produced will last a lifetime.” (Bergman et al. 2013)

The actions of EDCs on the development of endocrine and physiological system in fetuses are considered to be programming events. They set how these systems will function in adults. The WHO and UNEP study found that up to 40% of young men in some countries have low semen quality as well as an increase in genital malformations in baby boys such as non-descending testes and penile malformations. There is an increase in adverse pregnancy outcomes such as preterm birth and low birth weight. There is an increase in neurobehavioral disorders in children that are associated with thyroid disruption. The age of breast development in girls is decreasing and this is considered a risk factor for developing breast cancer later in life. Breast, endometrial, ovarian, cervical, prostate, testicular, and thyroid cancers are increasing. These are endocrine system-related cancers (Bergman et al. 2013, Vandenberg et al. 2012, Colborn et al. 1996, Cadbury 1998).

Protecting Our Children

Currently, for consumers, the only way to avoid synthetic pesticides is to eat organically grown food. Most children get their pesticide exposure from the residues in food – either directly by consuming food with pesticide residues or through the placenta and breast milk due to the pesticides in their mothers’ food. Several scientific studies show that eating organic food is the best way to protect children as most pesticide exposure comes from eating food from conventional farming systems.

A study published in Environmental Health Perspectives found that children who eat organic fruits, vegetables, and juices can significantly lower the levels of organophosphate pesticides in their bodies. The University of Washington researchers who conducted the study concluded, “The dose estimates suggest that consumption of organic fruits, vegetables, and juice can reduce children’s exposure levels from above to below the US Environmental Protection Agency’s current guidelines, thereby shifting exposures from a range of uncertain risk to a range of negligible risk. Consumption of organic produce appears to provide a relatively simple way for parents to reduce their children’s exposure to OP [organophosphate] pesticides.” (Curl et al. 2003)

Researchers in a 2006 study found that the urinary concentrations of the specific metabolites for malathion and chlorpyrifos decreased to undetectable levels immediately after the introduction of organic diets and remained undetectable until the conventional diets were reintroduced. The researchers from Emory University, Atlanta, Georgia; the University of Washington, Seattle, Washington; and the Centers for Disease Control and Prevention, Atlanta, Georgia, stated, “In conclusion, we were able to demonstrate that an organic diet provides a dramatic and immediate protective effect against exposures to organophosphorus pesticides that are commonly used in agricultural production. We also concluded that these children were most likely exposed to these organophosphorus pesticides exclusively through their diet.” (Lu et al. 2006)

Conclusion

A comprehensive body of published studies shows, that building up soil organic matter through organic agriculture can deliver many benefits including higher water absorption, resistance to erosion, higher yields in droughts, and adequate soil nitrogen without the need for synthetic chemical fertilizers.

Despite the large body of scientific evidence showing the harm that pesticides are causing to human and environmental health when pesticides are being reviewed by regulators for adverse effects on human health and the environment, industry groups always warn that they have no alternative but to use these toxic chemicals as crop protection tools as the justification for not banning them. In the final outcome, it is usually business as usual, or regulators may decide to modify the way pesticides are used to lessen some negative impacts. They are rarely withdrawn from use to ensure no adverse impacts on human health and the environment. (Leu 2014)

Trillions of dollars have been spent on research into conventional agriculture while at the same time in the last hundred years there has been almost total neglect of research into organic agriculture. A significant proportion of this research funding has been to develop and test the efficacy of synthetic toxic chemicals as pesticides such as herbicides, insecticides, and fungicides. (Leu 2014)

Some comparison meta-studies, such as the recent ones published in Nature and Agricultural Systems, suggest that, on average, organic yields are 80 percent of conventional yields. (de Ponti et al. 2012, Seufert et al. 2012) On the other hand, a meta-study by Badgley et al. suggests that the average organic yields are slightly below the chemical-intensive yields in the developed world and higher than the conventional average in the developing world. (Badgley et al. 2007) Assuming that the analyses in the journals Nature and Agricultural Systems are correct, 80 percent is an incredibly small yield gap in relation to the enormous level of research and resources that have been spent to achieve it.

The surprising fact is that millions of organic farmers have worked out how to get reasonable yields without the assistance of scientific research or the regular extension services that conventional agriculture receives.

The main reason for the lower yields in some organic systems has been the fact that research and development into organic systems have been largely ignored. More $50 billion is spent annually on agriculture research worldwide. Less than 0.4 percent (four dollars in every thousand) is spent on solutions specific to organic farming systems. (Niggli 2014)

Yet despite this lack of funding, all the data sets from the global meta-comparison studies have examples of regenerative and organic systems that have the same or higher yields than conventional agriculture. Research into regenerative and organic agriculture has been chronically underfunded. Trillions of dollars have gone into conventional and GMO research; the regenerative and organic sector receives a tiny fraction of this. This situation needs to be rectified so that the need for toxic synthetic pesticides is significantly reduced.

Given the small yield difference that has been achieved with trillions of dollars and countless thousands of researchers compared to what organic farmers have achieved when left largely to their own devices, it would have to be argued that the substantial proportion of the funding into industrial agriculture has been a very poor use of valuable research funds. Also given that the new research into organic systems is starting to show very impressive increases in yields, it is logical to argue that research into organic agriculture is a far better use of these research funds.

Mexico is to be congratulated for adopting regenerative and organic systems based on the science and practices of agroecology. This pathway will produce higher yields and income for Mexican farmers including wider health and biodiversity benefits for the Mexican community.

References Cited:

Aguileraa E, Lassalettab L, Gattinger A and Gimenoe S (2013) Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis, Agriculture, Ecosystems and Environment 168 (2013) 25–36

Badgley C. et al. (2007) “Organic Agriculture and the Global Food Supply,” Renewable Agriculture and Food Systems 22, no. 2 (2007): 86–108.

Bergman, Åke, Jerrold J. Heindel, Susan Jobling, Karen A. Kidd, and R. Thomas Zoeller, eds (2013) State of the Science of Endocrine Disrupting Chemicals 2012. United Nations Environment Programme and the World Health Organization, 2013.

Cadbury, Deborah (1998) The Feminization of Nature: Our Future at Risk. Middlesex, England: Penguin Books, 1998.

Colborn, Theo, Dianne Dumanoski, and John Peterson Myers (1996) Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? A Scientific Detective Story. New York: Dutton, 1996.

Curl, Cynthia, Richard A. Fenske, and Kai Elgethun (2003) “Organophosphorus Pesticide Exposure of Urban and Suburban Preschool Children with Organic and Conventional Diets.” Environmental Health Perspectives 111, no. 3 (March 2003): 377–82.

de Ponti T, Rijk B, and van Ittersum M (2012) “The Crop Yield Gap between Organic and Conventional Agriculture,” Agricultural Systems 108 (2012): 1–9.

Drinkwater L E, Wagoner P & Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396, 262 – 265 (1998).

Engel, Stephanie M., James Wetmur, Jia Chen, Chenbo Zhu, Dana Boyd Barr, Richard L. Canfield, and Mary S. Wolff (2011) “Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Children.” Environmental Health Perspectives 119 (2011): 1182–88. Published online April 21, 2011, http://ehp.niehs.nih.gov/1003183/.

Guerrero-Bosagna, Carlos, Trevor R. Covert, Matthew Settles, Matthew D. Anway, and Michael K. Skinner (2012) “Epigenetic Transgenerational Inheritance of Vinclozolin Induced Mouse Adult Onset Disease and Associated Sperm Epigenome Biomarkers.” Reproductive Toxicology 34, no. 4 (December 2012): 694–707.

Leu, Andre (2014) The Myths of Safe Pesticides, Acres USA, September 2014

Lotter DW, Seidel R and Liebhart W (2003) The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture, 18(3):146–154.

Lu, Chensheng, Kathryn Toepel, Rene Irish, Richard A. Fenske, Dana B. Barr, and Roberto Bravo (2006) “Organic Diets Significantly Lower Children’s Dietary Exposure to Organophosphorus Pesticides.” Environmental Health Perspectives 114, no. 2 (February 2006): 260–63.

Mäder P, Fließbach A, Dubois D, Gunst L, Fried P and Niggli U (2002) Soil fertility and biodiversity in organic farming, Science, 296: 1694-1697.

Manikkam, Mohan, Carlos Guerrero-Bosagna, Rebecca Tracey, Md. M. Haque, and Michael K. Skinner (2012 a) “Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures.” PLoS ONE 7, no. 2 (February 2012).

Manikkam, Mohan, Rebecca Tracey, Carlos Guerrero-Bosagna, and Michael K. Skinner (2012 b) “Pesticide and Insect Repellent Mixture Permethrin and DEET Induces Epigenetic Transgenerational Inheritance of Disease and Sperm Epimutations.” Journal of Reproductive Toxicology 34, no. 4 (December 2012): 708–19.

Morris GD (2004) SUSTAINING NATIONAL WATER SUPPLIES BY UNDERSTANDING THE DYNAMIC CAPACITY THAT HUMUS HAS TO INCREASE SOIL WATER-STORAGE CAPACITY, Thesis for the degree of Master of Sustainable Agriculture, Faculty of Rural Management, The University of Sydney, July 2004. Accessed Sept 01, 2014 http://biodynamics2024.com.au/

Niggli U (2014) “Sustainability of Organic Food Production: Challenges and Innovations,” Proceedings of the Nutrition Society, forthcoming.
Pastor, Patricia N. and Reuben, Cynthia A (2008) “Diagnosed Attention Deficit Hyperactivity Disorder and Learning Disability: United States, 2004–2006,” National Center for Health Statistics, Vital and Health Statistics 10, no. 237 (July 2008).

Pimentel D, Hepperly P, Hanson J, Douds D, and Seidel R (2005) Environmental, Energetic and Economic Comparisons of Organic and Conventional Farming Systems, Bioscience (Vol. 55:7), July 2005

Posner J, Baldock J and Hedtcke J, (2008) Organic and Conventional Production Systems in the Wisconsin Integrated Cropping Systems Trials: I. Productivity 1990–2002, Agronomy Journal 2008 100: 2: 253-260

Qiao, Dan, Frederic Seidler, and Theodore Slotkin (2001) “Developmental Neurotoxicity of Chlorpyrifos Modeled In Vitro: Comparative Effects of Metabolites and Other Cholinesterase Inhibitors on DNA Synthesis in PC12 and C6 Cells.” Environmental Health Perspectives 109, no. 9 (September 2001): 909–13.

Rauh, Virginia, Srikesh Arunajadai, Megan Horton, Frederica Perera, Lori Hoepner, Dana B. Barr, and Robin Whyatt (2011) “7-Year Neurodevelopmental Scores and Prenatal Exposure to Chlorpyrifos, a Common Agricultural insecticide.” Environmental Health Perspectives, 119 (2011): 1196–1201. Published online April 21, 2011.

Rauh, Virginia, Frederica P. Perera, Megan K. Horton, Robin M. Whyatt, Ravi Bansal, Xuejun Hao, Jun Liu, Dana Boyd Barr, Theodore A. Slotkin, and Bradley S. Peterson (2012) “Brain Anomalies in Children Exposed Prenatally to a Common Organophosphate Pesticide.” Proceedings of the National Academy of Sciences of the United States of America 109, no. 20 (May 2012)

Reuben S Ed., (2010) “U.S. President’s Cancer Panel 2008–2009 Annual Report; Reducing Environmental Cancer Risk: What We Can Do Now.” Suzanne H. Reuben for the President’s Cancer Panel, U.S. Department Of Health And Human Services, National Institutes of Health, National Cancer Institute, April 2010.

Seufert V, Ramankutty N, and Foley J A (2012), “Comparing the Yields of Organic and Conventional Agriculture,” Nature 485 (May 2012): 229–32, http://www.nature.com/nature/journal/v485/n7397/full/ nature11069.html;
Stevenson J, (1998) Humus chemistry. In: SOIL CHEMISTRY, John Wiley & Sons Inc, New York, USA: p148.

Teasdale JR, Coffman CB and Mangum RW (2007) Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 99:1297-1305.

Vandenberg, Laura N., Theo Colborn, Tyrone B. Hayes, Jerrold J. Heindel, David R. Jacobs Jr., Duk-Hee Lee, Toshi Shioda, Ana M. Soto, Frederick S. vom Saal, Wade V. Welshons, R. Thomas Zoeller, and John Peterson Myers (2012) “Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses.” Endocrine Reviews 33, no. 3 (June 2012): 378–455. First published ahead of print March 14, 2012, as doi:10.1210/er.2011-1050 (Endocrine Reviews 33: 0000–0000, 2012).

Welsh R (1999) Henry A. Wallace Institute, The Economics of Organic Grain and Soybean Production in the Midwestern United States, Policy Studies Report No. 13, May 1999

]]>
Regulation of Genetically Engineered Foods https://gmoscience.org/2015/12/23/regulation-genetically-engineered-foods/ Wed, 23 Dec 2015 17:05:32 +0000 https://gmoscience.org//?p=769 In the US, genetically engineered (GE) organisms are regulated by the Food and Drug Administration (FDA), the US Department of Agricultural (USDA) and the Environmental Protection Agency (EPA). Since the first commercialization of GE foods, the US National Academy of Sciences (NAS) has produced three major reports addressing the applications, risks, and benefits of GE crops and foods. A fourth comprehensive report is expected in the spring of 2016. The most recent, detailed NAS report addressing issues of food safety and human health was published in 2004.

While the NAS recognizes that genetic engineering has potentially hazardous unexpected and unintended consequences, it nonetheless states that it “is not aware of any evidence that foods on the market are unsafe to eat as a result of genetic modification” (2004 report, p. 9, bold in original). Every NAS report includes a statement to this effect, along with assurances that GE foods on the market as of 2004 pose, to the knowledge of the committees writing the reports, no different or more serious human health risks than non-engineered foods.


The absence of evidence of any food safety or nutritional risks would be reassuring if GE foods had been tested thoroughly and in accordance with the testing protocols suggested by the NAS, the international Codex Alimentarius Commission, and the many other expert bodies that have issued detailed recommendations for the testing of GE foods, both before market approval and post-commercialization. Unfortunately, not a single GE crop or food on the market today has been tested according to such recommendations.

The 2004 NAS committee offered many common-sense recommendations to improve the science base supporting GE crop and food risk assessment. These include reevaluating current research methodologies, developing new tools to assess the risk of GE foods producing novel allergens and toxins, and creating post-market evaluation tools and programs.

We hope that the NAS Committee will address the following critical points when it carries out its 2015-2016 evaluation of GE food testing, risk assessment, and regulation:

  1. The reasons why the recommendations from the 2004 and earlier NAS reports have gone largely unheeded, and why state-of-the-art risk assessment science has not been applied to today’s GE foods.
  2. The fact that in the years ahead, with the recent approvals of GE sweet corn, Bt eggplant, Arctic apples, Innate potatoes and AquaAdvantage salmon (although very few Americans have consumed these foods yet, with the exception of GE sweet corn which has been commercially significant in the US for only a few years), people will now begin to consume GE foods in forms likely to contain intact GE proteins.
  3. The worrisome gap in knowledge regarding the potential for “cross-talk” between multiple regulatory genes and sequences created by stacking traits. For several years, most GE corn varieties, for instance, have contained multiple, “stacked” traits, and one popular brand, SmartStax, contains eight (two herbicide-tolerant traits, and six Bt traits). Such unintended impacts could increase the level of known or new allergens and/or toxins.
  4. The importance of including the synergistic effects of the transgene(s), its expression, and the pesticides normally used on the crop – including the so-called inert ingredients incorporated in a given pesticide formulation – in safety evaluations and risk assessments.

The present acceptance of GE crops and foods rests on several questionable assumptions and assertions, including the belief that the FDA “approval” process is thorough and independent. It is neither. In fact, the FDA never really “approves” a GE food: it simply accepts assertions made by technology developers during the course of a “voluntary consultation.”

The FDA approval process

The FDA review process is based almost entirely on industry-sponsored studies. Information in the open, peer-reviewed scientific literature is often ignored or discounted.

The FDA does not conduct any original research or risk assessments on a newly proposed GE food. Nor does it conduct an independent assessment of the conclusions reached by technology developers and expressed in the “voluntary consultation” packages submitted to it.

When submitting a “voluntary consultation” package to the FDA, a company:

  1. Summarizes their own safety assessment.
  2. Asserts that the GE trait produces food that is “substantially equivalent” to the non-GE counterpart (often referred to as an “isoline”).
  3. States their conclusion that the GE food poses no new or more serious food safety or nutrition-related risk compared to non-engineered food.

The FDA simply accepts the data that the company has generated, along with its conclusions regarding safety. The agency does alert technology developers that they are responsible for informing it if they become aware of any data suggesting that the GE food might not be “substantially equivalent” or as safe as non-engineered food.

One need look no further than the typical letter that the FDA sends to a technology developer when it closes out – i.e., “approves” – a new GE food technology. In a 1996 letter to Monsanto, for instance, the FDA states,

Based on the safety and nutritional assessment [Monsanto has] conducted, it is our understanding that Monsanto has concluded that corn grain and forage derived from the new variety are not materially different in composition, safety, or other relevant parameters from corn grain and forage currently on the market, and that they do not raise issues that would require premarket review or approval by FDA. (FDA website)

Because the technology developer has concluded that the FDA does not need to conduct a premarket review, and because the FDA accepts that conclusion, the FDA has no substantive basis on which to “approve” the technology. The FDA “approval” is really an exemption from the standard FDA risk assessment process, and is, regrettably, only a small step removed from a free pass.

These are among the key reasons that we hope the ongoing NAS report on the health and safety of GE crops will examine in detail the FDA review process and recommend ways to strengthen it. In the following, we propose alternatives and evaluate the likely impact of the solutions that others have suggested.

For example, the FDA needs to ensure that the toxicological tests conducted are of sufficient duration and quality to rule out, or identify, potential food safety risks. The process also badly needs, and will benefit from, a greater level of independence and oversight by scientists not affiliated with or supported by technology developers.

Have GE crops been thoroughly tested?

The claim is often made that GE-food technology has undergone extremely thorough testing. A simple comparison of the number of available health impact studies shows otherwise. More than 11,000 citations can easily be found on DDT, and more than 3,000 on the insecticides chlorpyrifos and parathion and on the herbicides atrazine and 2,4-D. There are more than 1,500 studies on glyphosate. There are hundreds of thousands of health-impact studies on “all pesticides,” a class of agricultural technology roughly equivalent to “all GE crops.”

In comparison, there are only a few hundred studies designed to identify and/or quantify human health risks from consumption of GE food. An exhaustive review of the health effects of transgenic foods published in 2011 yielded a total of 75 studies covering GE potato, corn, maize, soybeans, rice, cassava, cucumbers, tomatoes, apples, and many other crops. Most of these studies were carried out for fewer than 91 days. For each of the above crops, there are several commercially significant transgenic events, most of which have been studied by scientists working for technology developers.

There are other categories of agricultural technology that have been examined in much greater depth than GE crops. Indisputable examples are antibiotics used for disease prevention and growth promotion, food additives, hormones used to accelerate animal growth or production, and food colors.

It would be closer to the truth for the NAS to state that GE foods are among the least well-tested agricultural technologies ever adopted.

The testing of GE crops poses significant challenges, including difficulty in ensuring that control animals in fact receive feed that is free of GE ingredients and that the Bt proteins used in animal feeding studies are, in fact, identical to the ones expressed in Bt-transgenic crops (the latter is often not the case, because of the cost of extracting enough Bt proteins from plants to run an animal feed experiment).

In spite of these difficulties, some animal feeding studies to test GE crops have revealed worrisome adverse health impacts and evidence of progress toward chronic disease. However, the US government has never funded research to follow up on experiments reporting adverse impacts, nor has it pushed forward the boundaries of scientific knowledge by trying to develop new tools to understand the mechanisms in transgenic plants through which novel allergens or toxins might be formed, detected, and studied for potential toxicity.

Substantial equivalence

Although the term “substantially equivalent” has been repeatedly used to justify the paucity of nutritional and food safety research on foods from GE crops, it is not subject to a rigorous scientific definition, nor does it encompass careful research on all compositional parameters and nutrient levels that might impact animal health.

In fact, studies of GE crops and their isolines grown in properly designed, side-by-side trials in multiple locations often show statistically significant differences in the levels of many nutrients. Technology developers, however, have argued that these differences should be dismissed as “biologically not meaningful” because they fall within the range of natural variation for the crop in question. It is time to define the concept of “substantial equivalence” much more rigorously in order to gain a more reliable, science-based understanding of the impacts of genetic engineering technology on agriculture.

Crops with stacked traits

Most GE corn varieties contain stacked traits. However, we are aware of only very few studies designed to test the question of whether unique risks arise as a result of stacking traits in a given cultivar. The FDA has adopted the position that if each trait is presumed safe individually, then combinations of traits will also be safe.

Until much needed science is carried out to determine whether FDA’s position on this issue is reasonable, the FDA “approval” process for GE crops/foods with stacked traits rests more on wishful thinking than on science.

Increased availability of transgenic products

We raise specific concerns over the introduction of three-trait sweet corn in the US which contains three GE traits and Bt eggplant internationally (although not yet in the US). EPA approval of Bt corn, both sweet corn and field corn, is based on data showing that Bt endotoxins are not acutely toxic to mammals and suggesting that they could be rapidly broken down in the mammalian GI tract.

However, transgenic Bt toxins can and do enter the bloodstream intact before they get to the stomach, via the gums, tongue, and throat in ways similar to sublingual medications (e.g., a pill placed under one’s tongue).

Moreover, while Bt endotoxins break down in the human stomach, very little research has been done to assess the type of elements they break down into, and whether fragments of Bt toxins might irritate the inner lining of the human GI tract. Such concern is grounded in an appreciation of the way activated Bt toxins attach to, and then create holes in, the stomachs of susceptible insects.

Furthermore, the experiment used to demonstrate Bt toxin destruction in the stomach is an in vitro assay at a highly acidic pH that does not duplicate stomach conditions for the millions of Americans on certain acid-reducing medications.

Chronic exposure to Bt toxins via crops that are ingested in minimally processed forms (such as sweet corn and eggplant) is therefore more likely to result in Bt toxins, or fragments thereof, entering the bloodstream. These fragments may then reach vital organs that might be vulnerable to such exposures, the effects of which have not been studied. We cannot responsibly accept the assertion that the consumption of these foods is safe for all humans. Such assertions might well prove correct in many, or even most cases, but for some others, particularly among individuals dealing with other, chronic conditions, or who are much more heavily exposed to GE proteins occupationally or through their diet, they may well not.

Further considerations: weed and insect resistance

Weed resistance is emerging as a critical concern for farmers planting GE, Roundup Ready® crops. The seed industry has responded by creating corn, soybean, and cotton plants genetically engineered to be tolerant of both glyphosate (the active ingredient in Roundup ®) and 2,4-D, or glyphosate and dicamba. Glyphosate and 2,4-D have been combined by Dow AgroSciences into the new product Enlist Duo®. The EPA approved the registration of Enlist Duo® in late 2014, but recently asked a court to reverse the approval, in effect banning any commercial use of the product until a set of issues involving impacts on non-target plants and endangered species are resolved.

When the EPA was first asked to approve GE Bt corn and cotton, the agency immediately recognized the risk of triggering the emergence of Bt-resistant insects. The EPA was also well aware, as were farmers, environmentalists, and ecologists, that the many natural forms of Bt play an absolutely critical role in soil food webs and in microbial biocontrol in the soil.

Moreover, several natural strains of Bt are incorporated in liquid bioinsecticides that are the backbone of Lepidopteran insect-control programs on many conventional and organic vegetable farms. Industry, farmers, environmentalists, and the EPA all agreed that the loss of Bt efficacy to resistance would be extremely costly and damaging and that strong, preventive measures should be taken if and as transgenic Bt crops were planted.

Hence, the initial approvals of Bt corn and cotton were accompanied by mandatory resistance management practices recommended by independent, mostly academic entomologists. For many years, this proactive approach worked as hoped, and the effectiveness of transgenic Bt corn and cotton did not start breaking down until industry pressure convinced the EPA to relax the preventive measures.

But in the early 1990s, when considering the first applications to approve Roundup Ready® crops, the EPA did not feel that mandatory resistance-risk prevention measures were warranted, even though the agency recognized that herbicide-tolerant crop technology would greatly increase the risk of Roundup-resistant weeds becoming a serious problem for farmers—a situation analogous to the development of Bt-resistant insects.

Why the difference in the way the EPA addressed the risk of resistance in the case of Bt crops versus herbicide-tolerant crops? In the case of Bt crops, the concern was about the future efficacy of a natural bioinsecticide of enormous value to all farmers, and indeed humankind. Since it was clear to just about everyone at the time that no company had the right to jeopardize the biological utility of such an important natural resource, the EPA felt justified in imposing mandatory resistance management practices.

But in the case of Roundup Ready® crops and their associated herbicide, glyphosate, the EPA left the management of glyphosate resistance to the manufacturer, concluding that they would believe it in their best interest to preserve the efficacy of their product.

In retrospect, the decision to leave glyphosate resistance management to market forces was one of the most costly and damaging decisions made in the 40-year history of the EPA’s Office of Pesticide Programs.

Labeling

In the US, foods from GE crops are not labeled as such. This impedes efforts by doctors and epidemiologists to trace any possible connections between consumption of GE foods and adverse health outcomes. Some consumers support labeling because of religious or cultural norms, while others want labeling so they can preferentially seek out or avoid GE foods. Consumer surveys consistently show 85% or more support for GE-food labeling.

Labeling also comes into play in an important way in the flow of agricultural commodities in world markets. Nearly 70 countries have made international sales of non-labeled GE crops illegal. The decision by a country, or a company, to not label GE food fosters mistrust, which can be costly when trying to secure or hold export market share.

Because of the need for labeling to conduct post-approval market surveillance and secure and retain access to many sensitive foreign markets, it is only a matter of time before all foods derived from US-grown GE crops will be labeled. In the interim, expect a lively debate over what sorts of labels should be required, who should impose the requirements, and who should oversee compliance (public versus private entity; states vs. the federal government).

Overcoming objections to GE foods

Several major changes in the way GE crops and foods are tested, analyzed, regulated, and marketed are going to be necessary to improve market acceptance. Substantial progress will take time, consistency, and transparency. Essential building blocks needed to resolve lingering risk assessment issues and gain consumer trust and acceptance include:

  1. Labeling of GE foods and associated public information campaigns.
  1. Risk assessment that conforms to a high standard of excellence. Given our present understanding, such assessment ought to include cutting-edge techniques, e.g. genomics, transcriptomics, proteomics, metabolomics, immunologye system parameters, as well as siRNA/miRNA profiling.
  1. Long-term animal-feeding studies. These should include multiple arms of investigation addressing toxicity, carcinogenicity, reproduction, and multigenerational effects, several physiologically relevant doses, and comparisons to isogenic, non-GMO-only controls. This testing should be based on real-world conditions, including the use of formulated pesticides where relevant.
  1. Long-term studies that define toxicokinetics and produce information sufficient to complete a comprehensive anatomical, histological, physiological, and biochemical analysis of major organs, blood, and urine.
  1. Post-market surveillance similar to that available for new medications. Until much more is known about the human health risks posed by GE crops, post-market surveillance must be carefully structured as part of government approval, and particular consideration should be accorded to the ways in which it will be carried out and paid for.

A transparent, comprehensive effort, demonstrating a real commitment to discovering harmful effects, if any, should be undertaken. In health care, we well understand the directive to “do no harm.” This should also pervade regulatory decision-making—especially when it comes to human food. Many members of the public erroneously believe that government agencies are acting in accordance with this directive in the case of agricultural biotechnology. We wish it were true and, because it is not, we will work to make it so.

For more information on this topic:

Druker, S. 2015. Altered Genes, Twisted Truth: How the venture to genetically engineer our food has subverted science, corrupted government and systematically deceived the public. Clear River Press.

]]>